Comparison of the PFAS and physical-chemical parameter fluctuations between an ash landfill and a MSW landfill
By Hekai Zhang, Yutao Chen, Yalan Liu, John A Bowden, Timothy G Townsend, and Helena M Solo-Gabriele
Waste Manag
December 22, 2023
DOI: 10.1016/j.wasman.2023.12.027
Studies of per- and polyfluoroalkyl substances (PFAS) fluctuations at landfills have focused on municipal solid waste (MSW) leachate. Few studies exist that evaluate fluctuations (defined by the coefficient of variation, CV) in MSW incinerator ash (MSWA) landfill leachate and that evaluate PFAS fluctuations in stormwater, groundwater, and treated liquids on-site. In this study, aqueous landfill samples (leachate, treated leachate, stormwater, gas condensate, ambient groundwater, and effluent from a groundwater remediation system) were collected from a MSW and an MSWA landfill geographically located within close proximity (less than 40 km). The objective of this study was to compare the leachate compositions between these two landfill types and to evaluate temporal variations. Results indicated that the CV of total detected PFAS concentrations in leachate was higher for the MSW landfill (CV = 43 %) compared to the MSWA landfill (CV = 16 %). The total detected PFAS concentration in MSW leachate samples (mean: 9641 ng/L) was higher than in MSWA leachate samples (mean: 2621 ng/L) (p < 0.05). Within a landfill, PFAS concentrations were correlated (r > 0.6, p < 0.05) with alkalinity, total organic carbon (TOC), and ammonia. Results from the on-site leachate treatment system at the MSW landfill indicated reductions in COD, TOC, and ammonia; however, the ∑PFAS concentration increased 3 % after the treatment. Overall, results demonstrated that differences between landfill types and fluctuations in PFAS within landfills should be considered when designing landfill leachate collection and treatment systems to remove PFAS. The comparative analysis in this study can provide insights into optimizing leachate management for MSW and MSWA landfills.
Topics: