Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic)

By Joran Solnes Skaar, Erik Magnus Ræder, Jan Ludvig Lyche, Lutz Ahrens, and Roland Kallenborn
Environ Sci Pollut Res Int.
November 7, 2019
DOI: 10.1007/s11356-018-2162-4

A combination of local (i.e. firefighting training facilities) and remote sources (i.e. long-range transport) is assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources has been conducted yet. Therefore, a survey was performed aiming at identifying local PFAS pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, freshwater (lake, draining rivers), seawater, meltwater run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ΣPFAS levels ranged from 0.4 to 4 ng/L in surface lake water (n = 20). PFAS in meltwater from the contributing glaciers showed similar concentrations (~ 4 ng/L, n = 2). The short-chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ΣPFASs), meltwater (20-30%) and run-off water (40%). Long-range transport is assumed to be the major PFAS source. In Longyearbyen, five water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS meltwater run-off (118 ng/L). Perfluorooctane sulfonic acid (PFOS) was the most abundant compound in the FFTS meltwater run-off (53-58% PFASs). At the research station Ny-Ålesund, seawater (n = 6), soil (n = 9) and freshwater (n = 10) were collected in June 2016. Low ΣPFAS concentrations were determined for seawater (5-6 ng/L), whereas high ΣPFAS concentrations were found in run-off water (113-119 ng/L) and soil (211-800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ΣPFAS levels (127 ng/L) were also found in freshwater from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS-affected sites (soil, water), PFOS was the most abundant compound (60-69% of ΣPFASs). FFTS and landfill locations were identified as major PFAS sources for Svalbard settlements.

View on PubMed

Location:

Topics: