Extractable organofluorine analysis: A way to screen for elevated per- and polyfluoroalkyl substance contamination in humans?

By Rudolf Aro, Ulrika Eriksson, Anna Kärrman, Kristina Jakobsson, and Leo W Y Yeung
Environ Int
December 19, 2021
DOI: 10.1016/j.envint.2021.107035

The ubiquitous occurrence of a few per- and polyfluoroalkyl substances (PFAS) in humans and the environment has been previously reported. However, the number of PFAS humans and the environment are potentially exposed to is much higher, making it difficult to investigate every sample in detail. More importantly, recent studies have shown an increasing fraction of potentially unknown PFAS in human samples. A screening tool for identifying samples of concern that may contain high PFAS levels, to be studied more thoroughly, is needed. This study presents a simplified workflow to detect elevated PFAS levels using extractable organofluorine (EOF) analysis. A fluorine mass balance analysis on samples with high EOF, targeting 63 PFAS, can then confirm the PFAS contamination. Whole blood samples from a cohort of individuals with historical drinking water contamination from firefighting foams (n = 20) in Ronneby (Sweden) and a control group (n = 9) with background exposure were used as a case study. The average EOF concentration in the Ronneby group was 234 ng/mLF (<107-592 ng/mLF) vs 24.8 ng/mLF (17.6-37.8 ng/mL F) in the control group. The large difference (statistically significant, p < 0.05) in the EOF levels between the exposed and control groups would have made it possible to identify samples with high PFAS exposure only using EOF data. This was confirmed by target analysis, which found an average ∑PFAS concentration of 346 ng/mL in the exposed group and 7.9 ng/mL in the control group. The limit of quantification for EOF analysis (up to 107 ng/mLF using 0.5 mL whole blood) did not allow for the detection of PFAS levels in low or sub parts per billion (ng/mL) concentrations, but the results indicate that EOF analysis is a suitable screening method sensitive enough to detect elevated/significant/exposure above background levels by known or unknown PFAS.

View on PubMed