Fire Test Performance of Eleven PFAS-Free Class B Firefighting Foams Varying Fuels, Admixture, Water Types and Foam Generation Techniques

By Dahlbom Sixten, Tove Mallin, and Magnus Bobert
Fire Tech.
February 14, 2022
DOI: 10.1007/s10694-022-01213-6

The firefighting performance of eleven PFAS-free firefighting foams was evaluated using different fuels (Jet A1, commercial heptane and diesel) and types of water (freshwater and synthetic sea water). Moreover, different firefighting foam generation techniques and application methods were evaluated. The firefighting foams were generated as aspirated foams or as compressed air foams (CAFs). The results for CAF showed a higher performance, with respect to extinction time and burn-back resistance, compared to the foam generated using a UNI 86 nozzle. The CAF was not optimised, indicating a further potential of this foam generation technique. The results indicate that the time to fire knockdown decreases with decreasing foam viscosity. The heat flux was shown to be small, although the entire fuel surface was involved in the fire. The tests showed a dependence on fuel type; different products performed differently depending on the fuel. Tests using sea water showed that addition of salt to the foam solution generally prolonged the extinction time, although for one of the firefighting foams a shorter extinction time was observed. Out of the eleven evaluated PFAS-free products there was no product that outperformed the rest. None of the products in the study met the fire test performance requirements in all the referenced standards. Instead, the products seem to have different niches where they perform best e.g., with different types of fuel or water.

 

View on SpringerLink

Topics: