First Report on the Bioaccumulation and Trophic Transfer of Perfluoroalkyl Ether Carboxylic Acids in Estuarine Food Web

By Yanan Yi, Jingzhi Yao, Jian Zhang, Yitao Pan, Jiayin Dai, Chenglong Ji, and Jianhui Tang
Environ. Sci. Technol.
July 27, 2021
DOI: 10.1021/acs.est.1c00965

As novel alternatives to legacy poly- and perfluoroalkyl substances (PFAS), perfluoroalkyl ether carboxylic acids (PFECAs) have been widely detected in the environment; however, there is limited information and knowledge regarding their bioaccumulation and trophic transfer behavior along the food chain. This research presents the first known published data on the bioaccumulation and trophic transfer characteristics of PFECAs in a source-impacted estuary. Elevated PFECA concentrations were observed in organisms (for instance, conch, with perfluoro-2-methoxyacetic acid (PFMOAA) concentration reaches up to 16 700 ng/g dry weight (dw)), indicating exposure risks to the consumers. Conch can be acted as a potential environmental bioindicator of PFMOAA. PFMOAA, hexafluoropropylene oxide trimer acid (HFPO-TrA) and PFOA were predominant detected in biotas. On the basis of trophic magnification factors (TMFs), PFECAs with ≥6 perfluorinated carbons (HFPO-TrA, hexafluoropropylene oxide tetramer acid (HFPO-TeA) and perfluoro (3, 5, 7, 9, 11-pentaoxadodecanoic) acid (PFO5DoA)) could be biomagnified along the food chain (TMF > 1), while PFMOAA with the least perfluorinated carbons undergone biodilution (TMF < 1). As seafood is an important dietary source of protein to human, there is a potential health risk related to the consuming polluted aquatic products.


View on ACS