Fluorine-Specific Detection Using ICP-MS Helps to Identify PFAS Degradation Products in Nontargeted Analysis

By Heuckeroth, Steffen, Tengetile N. Nxumalo, Andrea Raab, and Joerg Feldmann
Anal Chem
April 19, 2021
DOI: 10.1021/acs.analchem.1c00031

Although several per- and polyfluoroalkyl substances (PFAS) have been banned and classified as substances of very high concern by the European Chemicals Agency, similar chemicals remain widely used compounds to date. Even though more than 4700 PFASs may occur in the environment, only 40-50 compounds are routinely determined in targeted analysis by ESI-MS using isotopically labeled standards. Nontargeted analysis using high resolution (HR) molecular mass spectrometry suffers from a lack of data mining algorithms for identification and often low ionization efficiency of the compounds. An additional problem for quantification is the potential lack of suitable species specific standards. Here, we demonstrate the usefulness of a hard ionization source (ICP-MS/MS) as a fluorine-specific detector in combination with ESI-MS for the identification of fluorine containing compounds. Simultaneous hyphenation of HPLC-ICP-MS/MS with HR-ESI-MS is applied to evaluate biodegradation products of organofluorine compounds by sewage sludge. The data are analyzed in a nontarget approach using MZmine. Due to the fluorine-specific detection by ICP-MS/MS, more than 5000 peaks (features) of the ESI-MS were reduced to 15 features. Of these, one was identified as a PFAS degradation compound of fluorotelomer alcohol (8:2 FTOH) without using targeted analysis. The feasibility of the detection of organofluorine metabolites using a fluorine-specific detection was demonstrated using a model compound and can thus be applied to new experiments and unknown organofluorine containing samples in the future.

 

View on PubMed

Topics: