Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities

By Jeffrey M Minucci, Nicole M DeLuca, James T Durant, Bradley Goodwin, Peter Kowalski, Karen Scruton, Kent Thomas, and Elaine A Cohen Hubal
Environ Int
May 17, 2024
DOI: 10.1016/j.envint.2024.108756

Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.

View on PubMed

Topics: