Neurotransmission Targets of Per- and Polyfluoroalkyl Substance Neurotoxicity: Mechanisms and Potential Implications for Adverse Neurological Outcomes

By Josephine M Brown-Leung and Jason R Cannon
Chem Res Toxicol
August 3, 2022
DOI: 10.1021/acs.chemrestox.2c00072

Per- and polyfluoroalkyl substances (PFAS) are a group of persistent environmental pollutants that are ubiquitously found in the environment and virtually in all living organisms, including humans. PFAS cross the blood-brain barrier and accumulate in the brain. Thus, PFAS are a likely risk for neurotoxicity. Studies that measured PFAS levels in the brains of humans, polar bears, and rats have demonstrated that some areas of the brain accumulate greater amounts of PFAS. Moreover, in humans, there is evidence that PFAS exposure is associated with attention-deficit/hyperactivity disorder (ADHD) in children and an increased cause of death from Parkinson's disease and Alzheimer's disease in elderly populations. Given possible links to neurological disease, critical analyses of possible mechanisms of neurotoxic action are necessary to advance the field. This paper critically reviews studies that investigated potential mechanistic causes for neurotoxicity including (1) a change in neurotransmitter levels, (2) dysfunction of synaptic calcium homeostasis, and (3) alteration of synaptic and neuronal protein expression and function. We found growing evidence that PFAS exposure causes neurotoxicity through the disruption of neurotransmission, particularly the dopamine and glutamate systems, which are implicated in age-related psychiatric illnesses and neurodegenerative diseases. Evaluated research has shown there are highly reproduced increased glutamate levels in the hippocampus and catecholamine levels in the hypothalamus and decreased dopamine in the whole brain after PFAS exposure. There are significant gaps in the literature relative to the assessment of the nigrostriatal system (striatum and ventral midbrain) among other regions associated with PFAS-associated neurologic dysfunction observed in humans. In conclusion, evidence suggests that PFAS may be neurotoxic and associated with chronic and age-related psychiatric illnesses and neurodegenerative diseases. Thus, it is imperative that future mechanistic studies assess the impact of PFAS and PFAS mixtures on the mechanism of neurotransmission and the consequential functional effects.

View on PubMed

Topics: