Per- and polyfluoroalkyl substances and organofluorine in lakes and waterways of the northwestern Great Basin and Sierra Nevada

By Michael DeNicola, Zunhui Lin, Oscar Quiñones, Brett Vanderford, Mingrui Song, Paul Westerhoff, Eric Dickenson, and David Hanigan
Sci Total Environ
September 10, 2023
DOI: 10.1016/j.scitotenv.2023.166971

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals that occur ubiquitously in the environment and have been linked to numerous adverse health effects in humans and aquatic organisms. Although numerous environmental monitoring studies have been conducted, only one has evaluated PFAS in surface waters of the northwestern Great Basin, which features unique topography that results in dozens of endorheic basins and terminal lakes with no natural outlet, where PFAS may accumulate. To close this knowledge gap, we evaluated the occurrence of PFAS in grab samples from 15 lakes (headwater and terminal lakes) and 10 rivers in the Great Basin located in Nevada and California of the United States. PFAS and organofluorine were quantified by liquid chromatography tandem mass spectroscopy (LC-MS/MS) and combustion ion chromatography, respectively. The highest concentrations of PFAS occurred in samples taken near sites with known or suspected prior aqueous film forming foam (AFFF) application (~20 to 4754 ng/L). Samples near wastewater treatment plants and in urban areas also tended to have PFAS concentrations greater than those measured in remote, less anthropogenically influenced areas (~2 to 15 ng/L, <3 ng/L respectively). In limited snapshot sampling events PFAS appeared to accumulate in terminal lakes to some extent; in-lake concentrations were two to five times greater than those of their inflows. Fluorotelomer sulfonates were present downstream of a known AFFF application area likely to have had fluorotelomer-based foams applied to it, and the concentrations decayed in a predictable manner, suggesting they may be used as an indicator of PFAS transport away from an AFFF source. In all but two samples, organofluorine concentrations were greater than the sum of targeted PFAS (on a F basis) (median of 0.6 % of organofluorine identified via LC-MS/MS), although there was considerable variability in organofluorine measured in replicate samples.

View on PubMed

Topics: