Reconstructing the Composition of Per- and Polyfluoroalkyl Substances in Contemporary Aqueous Film-Forming Foams
By Ruyle, Bridger J., Colin P. Thackray, James P. McCord, Mark J. Strynar, Kevin A. Mauge-Lewis, Suzanne E. Fenton, and Elsie M. Sunderland
Environ Sci Technol Lett
March 1, 2021
DOI: 10.1021/acs.estlett.0c00798
Hundreds of public water systems across the United States have been contaminated by the use of aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS) during firefighting and training activities. Prior work shows AFFF contain hundreds of polyfluoroalkyl precursors missed by standard methods. However, the most abundant precursors in AFFF remain uncertain, and mixture contents are confidential business information, hindering proactive management of PFAS exposure risks. Here, we develop and apply a novel method (Bayesian inference) for reconstructing the fluorinated chain lengths, manufacturing origin, and concentrations of oxidizable precursors obtained from the total oxidizable precursor (TOP) assay that is generally applicable to all aqueous samples. Results show virtually all (median 104 ± 19%) extractable organofluorine (EOF) in contemporary and legacy AFFF consists of targeted compounds and oxidizable precursors, 90% of which are 6:2 fluorotelomers in contemporary products. Using high-resolution mass spectrometry, we further resolved the 6:2 fluorotelomers to assign the identity of 14 major compounds, yielding a priority list that accounts for almost all detectable PFAS in contemporary AFFF. This combination of methods can accurately assign the total PFAS mass attributable to AFFF in any aqueous sample with differentiation of gross precursor classes and identification of major precursor species.
View on PubMed
Topics: