Removal and formation of perfluoroalkyl substances in Canadian sludge treatment systems - A mass balance approach

By Narasimman Lakshminarasimman, Sarah B Gewurtz, Wayne J Parker, and Shirley Anne Smyth
Sci Total Environ .
December 8, 2020
DOI: 10.1016/j.scitotenv.2020.142431

Poly- and per-fluoroalkyl substances (PFAS) are an emerging class of anthropogenic contaminants whose occurrence has raised concerns with the beneficial reuse of biosolids from wastewater treatment. This study evaluated the behavior of thirteen PFAS in nine Canadian sludge treatment systems including pelletization, alkaline stabilization, aerobic and anaerobic digestion processes. The composition of the overall PFAS-fluorine (ΣPFAS-F) loading in a system fed with only primary sludge was dominated by perfluorodecanoate (PFDA), whereas systems with blended primary and waste activated sludge feeds had a mix of short and long chain PFAS in raw sludges and treated biosolids. An increase in average ΣPFAS-F mass flow was observed through pelletization (19% formation) and alkaline stabilization (99% formation) processes indicating negative removal or contaminant formation. One of the two aerobic digestion systems and three of the five anaerobic digestion systems showed modest reductions (< 40% removal) in ΣPFAS-F loading. Long chain PFAS such as perfluorodecanoate (PFDA) and perfluorooctane sulfonate (PFOS) exhibited a wide variation in behavior ranging from substantial formation (> 75% formation) to modest removal (42% removal) in the surveyed systems while short chain perfluoropentanoate (PFPeA) mass flows increased through the three systems where they occurred. Overall, the contaminant mass balances revealed that there were significant changes in mass flows of the target PFAS through all kinds of sludge treatment systems. The results of this study on PFAS fate through sludge processing can inform future global PFAS risk management activities as well as sludge treatment considerations.


View on PubMed