Species dependent accumulation and transformation of 8:2 polyfluoroalkyl phosphate esters in sediment by three benthic organisms

By Meng Chen, Qiang Wang, Yumin Zhu, Lingyan Zhu, Bowen Xiao, Menglin Liu, and Liping Yang
Environ Int
October 21, 2019
DOI: 10.1016/j.envint.2019.105171

Sediment is a major sink for 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in the environment. In the present study, three representative benthic organisms, including carp (Cyrinus carpio), loach (Misgurnus anguillicaudatus) and worm (Limnodrilus hoffmeisteri), were exposed to 8:2 diPAP spiked sediment at 300 ng g. 8:2 diPAP in the sediment was bioavailable to carp, loach and worm even though the biota-sediment accumulation factors (BSAFs) (0.137, 0.0273, 0.413 g g, respectively) were relatively low due to its large molecular weight and high log K value. The worm displayed the greatest enrichment ability among the three species, implying the utility of using worm as a bio-indicator of 8:2 diPAP pollution in sediment. The biotransformation products (e.g. 8:2 FTUCA and 7:3 FTCA) were detected in all the three species, suggesting that they had the ability to transform 8:2 diPAP. Loach displayed the strongest metabolism capacity while worm displayed the weakest. Transformation of 8:2 diPAP also took place in the sediment by microorganisms. Notably, the concentration ratio of 7:3 FTCA and 8:2 FTUCA in the sediment was much lower than that in benthic organisms, suggesting that the aquatic benthic organisms and microorganisms had different transformation activities and mechanisms.

View on PubMed

Topics: