Systemic toxicity induced by topical application of perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) in a murine model

By Lisa M Weatherly, Hillary L Shane, Ewa Lukomska, Rachel Baur, and Stacey E Anderson
Food Chem Toxicol
November 23, 2022
DOI: 10.1016/j.fct.2022.113515

PER: and polyfluoroalkyl substances (PFAS) are a class of synthetic structurally diverse chemicals incorporated into industrial and consumer products. PFHpA, PFHxA, and PFPeA are carboxylic PFAS (C7, C6, C5, respectively) labeled as a safer alternative to legacy carboxylic PFAS due to their shorter half-life in animals. Although there is a high potential for dermal exposure, these studies are lacking. The present study conducted analyses of serum chemistries, immune phenotyping, gene expression, and histology to evaluate the systemic toxicity of a sub-chronic 28-day dermal exposure of alternative PFAS (1.25-5% or 31.25-125 mg/kg/dose) in a murine model. Liver weight (% body) significantly increased with PFHpA, PFHxA, and PFPeA exposure and histopathological changes were observed in both the liver and skin. Gene expression changes were observed with PPAR isoforms in the liver and skin along with changes in genes involved in steatosis, fatty acid metabolism, necrosis, and inflammation. These findings, along with significant detection levels in serum and urine, support PFAS-induced liver damage and PPARα, δ, and γ involvement in alternative PFAS systemic toxicity and immunological disruption. This demonstrates that these compounds can be absorbed through the skin and brings into question whether these PFAS are a suitable alternative to legacy PFAS.

View on PubMed

Topics: