Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp. Strain A6
By Shan Huang and Peter R. Jaffé
ACS Pub.
September 23, 2019
DOI: 10.1021/acs.est.9b04047
Incubations with pure and enrichment cultures of Acidimicrobium sp. strain A6 (A6), an autotroph that oxidizes ammonium to nitrite while reducing ferric iron, were conducted in the presence of PFOA or PFOS at 0.1 mg/L and 100 mg/L. Buildup of fluoride, shorter-chain perfluorinated products, and acetate was observed, as well as a decrease in Fe(III) reduced per ammonium oxidized. Incubations with hydrogen as a sole electron donor also resulted in the defluorination of these PFAS. Removal of up to 60% of PFOA and PFOS was observed during 100 day incubations, while total fluorine (organic plus fluoride) remained constant throughout the incubations. To determine if PFOA/PFOS or some of their degradation products were metabolized, and since no organic carbon source except these PFAS was added, dissolved organic carbon (DOC) was tracked. At concentrations of 100 mg/L, PFOA/PFOS were the main contributors to DOC, which remained constant during the pure A6 culture incubations. Whereas in the A6 enrichment culture, DOC decreased slightly with time, indicating that as defluorination of PFOS/PFOA occurred, some of the products were being metabolized by heterotrophs present in this culture. Results show that A6 can defluorinate PFOA/PFOS while reducing iron, using ammonium or hydrogen as the electron donor.
Topics: