Diffusion of perfluoroalkyl acids through clay-rich soil

By Charles E Schaefer, Dina Drennan, Anastasia Nickerson, Andrew Maizel, and Christopher P Higgins
J Contam Hydrol
May 4, 2021
DOI: 10.1016/j.jconhyd.2021.103814

Diffusion through a water saturated silty clay soil column was measured for six perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). An aqueous pore diffusion model, which incorporated linear adsorption parameters measured independently in batch tests and a tortuosity factor determined independently using a bromide tracer test, was used to describe the experimental diffusion data. The diffusion model substantially underpredicted PFAA diffusion through the soil column for the more strongly sorbing PFAAs (most notably PFOS). Instead, application of a diffusion model that included a surface diffusion-like process provided substantially improved prediction of PFAA diffusion through the soil. The ratio of the observed pore diffusion coefficient to the observed surface diffusion coefficient ranged from 13 (for perfluorohexane sulfonate) to 0.88 for PFOS. These results suggest that surface diffusion serves a potentially important role for strongly sorbing PFAAs in clay-rich soils, and highlights the need for additional studies into the coupled adsorption and diffusion of PFAAs in low permeability media.


View on PubMed