Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic

By Xing Li, Tuo Li, Zhenpeng Wang, Jinchao Wei, Jianan Liu, Yangyang Zhang, and Zhenwen Zhao
Talanta
March 16, 2021
DOI: 10.1016/j.talanta.2021.122150

Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant (POP), and the harm caused by the enrichment of PFOS in living organism has attracted more and more attention. In this work, animal exposure model to PFOS was established. Mass spectrometry (MS), mass spectrometry imaging (MSI), hematoxylin and eosin (H&E) staining and lipidomics were combined for the study of the organ targeting of PFOS, the toxicity and possible mechanism caused by PFOS. PFOS most accumulated in the liver, followed by the lungs, kidneys, spleen, heart and brain. Combined with H&E staining and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) results, it was found that the accumulation of PFOS indeed caused damage in particular areas of specific organ, like in the liver and in the marginal area of the heart. This work found that PFOS could cross the blood-brain barrier, entered the brain and caused the neurotoxicity, which was surprising and might be the reason that high dose of PFOS could cause convulsions. From the liver lipidomic analysis, we found that PFOS exposure mainly affected glycerophospholipid metabolism and sphingolipid metabolism. The up-regulated ceramide and lysophosphatidylcholine (LPC) might lead to liver cell apoptosis, and the decrease in liver triglyceride (TG) content might result in insufficient energy in mice and cause liver morphological damage. Phosphatidylcholine (PC) synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) pathway might be a mechanism of self-protection in animals against PFOS induced inflammation. This study might provide new insight into underlying toxicity mechanism after exposure to PFOS.

View on PubMed

Topics: