Ecosystem-wide PFAS characterization and environmental behavior at a heavily contaminated desert oasis in the southwestern US
By Jean-Luc E. Cartron, Chauncey R. Gadek, Jonathan L. Dunnum, Christopher C. Witt, Mariel L. Campbell, Samuel J. Romero, Andrew B. Johnson, Julie Kutz, Christopher Wolf, Sarah J. Choyke, and Joseph A. Cook
Environmental Research
June 2, 2025
DOI: 10.1016/j.envres.2025.121872
Record-high PFAS contamination levels were recently reported in birds and small mammals from Holloman Lake, a high-salinity wastewater oasis located in southern New Mexico, USA. We expanded the PFAS screening to surface water, soils, algae, invertebrates, fish, reptiles, and a larger number of plants, birds, and mammals to examine the fate, transport, and bioaccumulation of PFAS in the ecosystem and generate contamination profiles across both the water-land interface and multiple trophic levels. C5 and C6 perfluorocarboxylic acids, both of them known degradation products of 6:2 FTS, were the dominant PFAS in surface water in the lake. In contrast, perfluorooctanesulfonic acid (PFOS) was the main PFAS found in sediments along the shoreline, with the number of fluorinated carbons in the alkyl chain and clay minerals both appearing to play a key role in soil sorption. High soil PFAS concentrations up to 900 m from the edge of the water could not be explained by air transport of contaminated dust and instead seemed related to past inundation events involving contaminated water. Higher PFAS concentrations along the main body of the lake included an extraordinary 30,000 ng/g ww of PFOS recorded for a composite saltcedar (Tamarix sp.) tissue sample. Bioaccumulation pervaded the ecosystem's food webs and trophic levels, with PFAS detection in all species and all types of animal tissue (blood, liver, muscle, and bone). Contamination involved mainly PFOS, followed by perfluorohexanesulfonic acid (PFHxS), with the observed concentrations of PFAS increasing concomitantly among tissue types but the liver bioaccumulating at a faster rate.
Location:
Topics: