Fluorine Mass Balance Analysis and Per-and Polyfluoroalkyl Substances in the Atmosphere
By Huiju Lin, Sachi Taniyasu, Eriko Yamazaki, Rongben Wu, Paul KS Lam, Heesoo Eun, and Nobuyoshi Yamashita
J. Hazard. Mater.
May 17, 2022
DOI: 10.1016/j.jhazmat.2022.129025
Given that only a small number of per- and polyfluoroalkyl substances (PFAS) are routinely monitored, levels of PFAS in the atmosphere may be underestimated. A protocol including analyses of target PFAS (n = 50), water-soluble fluoride, and total fluorine has been proposed and applied to atmospheric samples. The whole method recovery (including extraction recovery and sampling efficiency) of 90–110% were obtained for the majority of compounds (48/50) with low deviations between replicates (< 20%). Fluorotelomer alcohols were the most prevalent PFAS in the indoor air, while the outdoor air was dominated by the ultrashort-chain ionic PFAS (e.g., trifluoroacetic acid and perfluoropropanoic acid). Concentrations of organofluorine (OF) compounds calculated from the fluorine mass balance ranged from 1.74 ng F/m3 to 14.3 ng F/m3 and from 52.0 ng F/m3 to 1100 ng F/m3 in the particulate and gaseous phases, respectively, whereas only a minor proportion (around 1%) could be explained by target PFAS. In indoor air, OF compounds were observed in relatively high levels and with a shift to the fine particles (PM<1) . Our results reveal a large proportion of unidentified OF signatures in the atmosphere and suggest the need to use multiple approaches to improve our understanding of airborne fluorinated substances.
View on ScienceDirect
Topics: