GenX Disturbs the Indicators of Hepatic Lipid Metabolism Even at Environmental Concentration in Drinking Water via PPARĪ± Signaling Pathways
By Wenshan Shi, Zengli Zhang, Xinyu Li, Jingsi Chen, Xiaojun Liang, and Jiafu Li
Chem Res Toxicol
December 27, 2023
DOI: 10.1021/acs.chemrestox.3c00342
Hexafluoropropylene oxide dimer acid (HFPO-DA; trade name GenX), as a substitute for perfluorooctanoic acid (PFOA), has been attracting increasing attention. However, its impact and corresponding mechanism on hepatic lipid metabolism are less understood. To investigate the possible mechanisms of GenX for hepatotoxicity, a series of and experiments were conducted. In experiment, male mice were exposed to GenX in drinking water at environmental concentrations (0.1 and 10 μg/L) and high concentrations (1 and 100 mg/L) for 14 weeks. In experiments, human hepatocellular carcinoma cells (HepG2) were exposed to GenX at 10, 160, and 640 μM for 24 and 48 h. GenX exposure via drinking water resulted in liver damage and disruption of lipid metabolism even at environmental concentrations. The results of triglycerides (TG) and total cholesterol (TC) in this study converged with the results of the population study, for which TG increased in the liver but unchanged in the serum, whereas TC increased in both liver and serum concentrations. KEGG and GO analyses revealed that the hepatotoxicity of GenX was associated with fatty acid transport, synthesis, and oxidation pathways and that Peroxisome Proliferator-Activated Receptor (PPARα) contributed significantly to this process. PPARα inhibitors significantly reduced the expression of CD36, CPT1β, PPARα, SLC27A1, ACOX1, lipid droplets, and TC, suggesting that GenX exerts its toxic effects through PPARα signaling pathway. In general, GenX at environmental concentrations in drinking water causes abnormal lipid metabolism via PPARα signaling pathway.
Topics: