High levels of fluoroalkyl substances and potential disruption of thyroid hormones in three gull species from South Western France
By M Sebastiano, W Jouanneau, P Blévin, F Angelier, C Parenteau, J Gernigon, J C Lemesle, F Robin, P Pardon, H Budzinski, P Labadie, and O Chastel
Sci Total Environ
January 5, 2021
DOI: 10.1016/j.scitotenv.2020.144611
Per- and poly-fluoroalkyl substances (PFAS) raised increasing concerns over the past years due to their persistence and global distribution. Understanding their occurrence in the environment and their disruptive effect on the physiology of humans and wildlife remains a major challenge in ecotoxicological studies. Here, we investigate the occurrence of several carboxylic and sulfonic PFAS in 105 individuals of three seabird species (27 great black-backed gull Larus marinus; 44 lesser black-backed gull Larus fuscus graellsii; and 34 European herring gull Larus argentatus) from South western France. We further estimated the relationship between plasma concentrations of PFAS and i) the body condition of the birds and ii) plasma concentrations of thyroid hormone triiodothyronine (TT3). We found that great and lesser black-backed gulls from South Western France are exposed to PFAS levels comparable to highly contaminated species from other geographical areas, although major emission sources (i.e. related to industrial activities) are absent in the region. We additionally found that PFAS are negatively associated with the body condition of the birds in two of the studied species, and that these results are sex-dependent. Finally, we found positive associations between exposure to PFAS and TT3 in the great black-backed gull, suggesting a potential disrupting mechanism of PFAS exposure. Although only three years of data have been collected, we investigated PFAS trend over the study period, and found that great black-backed gulls document an increasing trend of plasma PFAS concentration from 2016 to 2018. Because PFAS might have detrimental effects on birds, French seabird populations should be monitored since an increase of PFAS exposure may impact on population viability both in the short- and long-term.
Location:
Topics: