High-resolution mass spectrometry for identification, quantification, and risk assessment of 40 PFAS migrating from microwave popcorn bags
By Jen-Yi Hsu, Huei-Jie Jiang, Chih-Wei Chang, Yuan-Chih Chen, and Pao-Chi Liao
Molecules
April 29, 2025
DOI: 10.3390/molecules30091989
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely utilized in food contact materials (FCMs) due to their water- and oil-repellent properties, yet their potential migration into food raises significant health concerns. This study employs high-resolution mass spectrometry (HRMS) to quantify the migration of 40 PFAS from microwave popcorn bags and assess the associated health risks. HRMS offers high mass accuracy and resolution, enabling precise detection of a broad spectrum of PFASs, including those with low migration levels. Migration experiments were conducted using 10% ethanol and 50% ethanol as food simulants at 70 °C for 2 h. The results indicate that when risk assessment is based solely on the European Food Safety Authority’s (EFSA) tolerable weekly intake (TWI) for four PFAS, hazard ratio (HR) values range from 0.01 to 0.8, suggesting minimal risk. However, when all PFAS are converted into perfluorooctanoic acid equivalents (PEQs) and compared against the U.S. Environmental Protection Agency’s (EPA’s) reference dose (RfD), HR values range from 0.3 to 142.3, indicating a significantly elevated health risk. These findings emphasize the necessity of comprehensive risk assessments incorporating the cumulative effects of all PFAS to better understand potential human exposure and inform regulatory policies.
Location:
Topics: