Perfluorooctane sulfonate (PFOS) disturbs fatty acid metabolism in Caenorhabditis elegans: Evidence from chemical analysis and molecular mechanism exploration
By Cuiyun Wei, Zhen Zhou, Ling Wang, Zichun Huang, Yong Liang, and Jie Zhang
Chemosphere
August 17, 2021
DOI: Cuiyun Wei, Zhen Zhou, Ling Wang, Zichun Huang, Yong Liang, and Jie Zhang
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that might induce disorders in fatty acid (FA) metabolism, but the underlying mechanisms remain unresolved. Caenorhabditis elegans (C. elegans) as a model organism can synthesize polyunsaturated FAs de novo via the polyunsaturated FA synthesis pathway. In this study, synchronized L1 C. elegans were exposed to 0, 0.01, 0.1, 0.5 and 1 μM PFOS for 72 h. Gas chromatography-mass spectrometry (GC-MS) was used to establish a sensitive and reliable analysis method for PFASs in exposed nematode, the instrument detection limits of nine fatty acid methyl esters examined ranged between 1.11 and 27.6 ng/mL, with satisfactory reproducibility (RSD < 10%) observed. Methyl pentadecanoate (C15:0) was used as an internal standard, the linearity of the calibration (0.1-10 μg/mL) nine FAs from the nematode were quantitatively analyzed. Comparing with the control group, PFOS exposure caused significantly decreased levels of C18:0 while significantly increased levels of C18:3n6. A decrease in the C18:3n6: C18:2n6 ratio was observed. Consistently, expression of the FA desaturation gene fat-3 was significantly down-regulated. These findings suggest that the FA disorder is associated with decrease in mRNA expression of Δ6-desaturase genes in C. elegans. Simultaneously, the disorders in FA metabolism were found to disrupt mitochondrial function with a reduction in ATP synthesis, as determined by the luciferase method. In summary, the results of the study provide insights into the adverse effects of PFOS on FA metabolism in living organisms.
View on PubMed
Topics: