Persistent organic pollutant exposure and celiac disease: A pilot study

By Abigail Gaylord, Leonardo Trasande, Kurunthachalam Kannan, Kristen M. Thomas, Sunmi Lee, Mengling Liu, and Jeremiah Levine
Environ. Res.
May 13, 2020
DOI: 10.1016/j.envres.2020.109439

Celiac disease affects approximately 1% of the population worldwide. Little is known about environmental factors that may modulate risk in genetically susceptible populations. Persistent organic pollutants (POPs) are known endocrine disruptors and, given the interplay between the endocrine and immune systems, are plausible contributors to celiac disease. The current study aims to elucidate the association between POPs and celiac disease. We conducted a single-site pilot study of 88 patients recruited from NYU Langone's Hassenfeld Children's Hospital outpatient clinic, 30 of which were subsequently diagnosed with celiac disease using standard serology and duodenal biopsy examination. Polybrominated diphenyl ether (PBDEs), perfluoroalkyl substances (PFASs), and p,p’-dichlorodiphenyldichloroethylene (DDE) and HLA-DQ genotype category were measured in blood serum and whole blood, respectively. Multivariable logistic regressions were used to obtain odds ratios for celiac disease associated with serum POP concentrations. Controlling for sex, race, age, BMI, and genetic susceptibility score, patients with higher serum DDE concentrations had 2-fold higher odds of celiac disease (95% CI: 1.08, 3.84). After stratifying by sex, we found higher odds of celiac disease in females with serum concentrations of DDE (OR = 13.0, 95% CI = 1.54, 110), PFOS (OR = 12.8, 95% CI = 1.17, 141), perfluorooctanoic acid (OR = 20.6, 95% CI = 1.13, 375) and in males with serum BDE153, a PBDE congener (OR = 2.28, 95% CI = 1.01, 5.18). This is the first study to report on celiac disease with POP exposure in children. These findings raise further questions of how environmental chemicals may affect autoimmunity in genetically susceptible individuals.

View on PubMed

Location:

Topics: