PFAS River Export Analysis Highlights the Urgent Need for Catchment-Scale Mass Loading Data

By Patrick Byrne, William M. Mayes, Alun L. James, Sean Comber, Emma Biles, Alex L. Riley, and Robert L. Runkel
ES&T Letters
February 19, 2024
DOI: 10.1021/acs.estlett.4c00017

Source apportionment of per- and polyfluoroalkyl substances (PFAS) requires an understanding of the mass loading of these compounds in river basins. However, there is a lack of temporally variable and catchment-scale mass loading data, meaning identification and prioritization of sources of PFAS to rivers for management interventions can be difficult. Here, we analyze PFAS concentrations and loads in the River Mersey to provide the first temporally robust estimates of PFAS export for a European river system and the first estimates of the contribution of wastewater treatment works (WwTWs) to total river PFAS export. We estimate an annual PFAS export of 68.1 kg for the River Mersey and report that the yield of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the catchment is among the highest recorded globally. Analysis of river and WwTW loads indicates approximately one-third of PFOA emitted from WwTWs is potentially stored in the catchment and approximately half of PFOS transported by the River Mersey may not originate from WwTWs. As governments move toward regulation of PFAS in WwTW effluents, our findings highlight the complexity of PFAS source apportionment and the need for catchment-scale mass loading data. This study indicates that strategies for reducing PFAS loading that focus solely on WwTW effluents may not achieve river water quality targets.

 

View on ACS

Topics: