Polyfluoroalkyl substances in Danjiangkou Reservoir, China: Occurrence, composition, and source appointment
By Jie Li, Yufan Ai, Jingrun Hu, Nan Xu, Rui Song, Yanrong Zhu, Weiling Sun, and Jinren Ni
Sci. of the Total Environ.
April 21, 2020
DOI: 10.1016/j.scitotenv.2020.138352
Legacy polyfluoroalkyl substances (PFASs) have been widely detected in various environmental matrices, which has caused great public concern. This study investigated the concentration, composition, partitioning, source apportionment, estimated daily intake (EDI), and ecological risks of 18 PFASs in water and sediments from Danjiangkou Reservoir. The total PFASs concentrations were 0.46–97.94 ng/L in water and 0.07–1.62 μg/kg in sediments. The total PFASs concentrations in water followed the order of spring > summer > winter > autumn (p < 0.05), and the PFAS compositions in water also varied among four seasons. However, no seasonal differences in the concentrations and compositions of PFASs were observed in sediments. The calculated logKoc values of perfluoroalkyl carboxylic acids (PFCAs) were dependent on carbon chain length, decreasing first from C6 to C8 and then increasing from C8 to C13 due to the combined effects of steric hindrance and hydrophobic interaction, while the logKoc values of C14 and C16 PFCAs were the lowest because of their very limited use. Principal component analysis-multiple linear regression analysis (PCA-MLRA) showed that food packaging/metal plating were the main sources of PFASs in spring, autumn, and winter, accounting for 64.8–81.9% and 50.5–76.9% of the total PFASs in water and sediments, respectively. However, in summer, 68.6% of total PFASs in water originated from leather/fabrics/textiles, and 70.0% of total PFASs in sediments were derived from textile treatment agents. The total EDI values through drinking water and dermal contact were 0.85, 0.69, 0.51, and 0.47 ng/kg bw/day for children (2–6, 7–12, and 13–17 years old) and adults, respectively, which were lower than the European Food Safety Authority's tolerable daily intake. However, the detected PFASs could pose low to medium ecological risks to daphnids and fish in spring. The study was significant for the development of effective strategies for controlling PFASs pollution in the Danjiangkou Reservoir.
Location:
Topics: