The Total Mass of Per- and Polyfluoroalkyl Substances (PFASs) in California Cosmetics

By Simona A Bălan, Thomas A Bruton, Kyle Harris, Logan Hayes, Christopher P Leonetti, Vivek C Mathrani, Abigail E Noble, and Diana S C Phelps
Environ Sci Technol
June 27, 2024
DOI: 10.1021/acs.est.3c06539

Cosmetics make up one of the consumer product categories most widely known to contain perfluoroalkyl and polyfluoroalkyl substances (PFASs), including precursors to perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids (PFAAs). Because of the way cosmetics are used, most of the PFASs present in these products are likely to reach wastewater treatment plants (WWTPs), which suggests that cosmetics may contribute significantly to the load of PFOA and other PFASs at WWTPs. However, the majority of PFASs present as intentional ingredients in cosmetics cannot be quantified with the available analytical methods. To address this issue, we developed a methodology to estimate the total PFAS mass in cosmetics as well as the corresponding mass of total organic fluorine and of fluorinated side chains associated with PFAA precursors, using various ingredient databases and ingredient concentrations reported by manufacturers. Our results indicate that the cosmetics sold in California during a one-year period cumulatively contain 650-56 000 kg of total PFASs, 370-37 000 kg of organic fluorine, and 330-20 000 kg of fluorinated side chains associated with PFAA precursors. Among the 16 product subcategories considered, >90% of the PFAS mass came from shaving creams and gels, hair care products, facial cleansers, sun care products, and lotions and moisturizers, while the sum of all nine makeup subcategories accounted for <3%. Comparing our estimates to available WWTP influent data from the San Francisco Bay Area suggests that cosmetics may account for at least 4% of the precursor-derived PFAAs measured in wastewater. As the first study ever to estimate the total mass of PFASs contained in cosmetics sold in California, our results shed light on the significance of certain cosmetics as a source of PFASs to WWTPs and can inform effective source reduction efforts.

View on PubMed