Are resource recovery insects safe for feed and food? A screening approach for bioaccumulative trace organic contaminants

By Wenting Li and Heather N. Bischel
Sci. Total Environ.
June 1, 2022
DOI: 10.1016/j.scitotenv.2022.155850

Most bioaccumulation assessments select one or several compound classes a priori for analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC–MS). When organisms are exposed to complex mixtures of trace organic contaminants (TOrCs), targeted chemical assays limit understanding of contaminant profiles in biological tissues and associated risks. We used a semi-quantitative suspect-screening approach to assess the bioaccumulation potential of diverse TOrCs in black soldier fly larvae (BSFL) using almond hulls (by-products of the booming almond industry in California) as test substrates. BSFL digestion is gaining traction as a resource recovery strategy to generate animal feed from low-value organic wastes. We screened almond hulls from six California farms for the presence of 5728 TOrCs using high resolution mass spectrometry. We then categorized the risk potential of 46 TOrCs detected in the hulls based on their predicted bioaccumulation, persistence, and toxicity in order to select two hulls for an in situ BSFL bioaccumulation screening study. We analyzed larvae tissues and feeding substrate initially and after 14 days of growth using targeted, suspect-screening, and nontarget-screening methods. The survival rate of BSFL in all rearing reactors was greater than 90%, indicating low toxicity of the substrates to BSFL. Esfenvalerate, cyhalothrin, and bifenthrin were the most abundant pyrethroids quantified (81.7 to 381.6 ng/g-dw) in the hulls. Bifenthrin bioaccumulated in BSFL tissues (14-day bioaccumulation factor, BAF, of 2.17 ± 0.24). For nontarget analysis, kendrick mass defect (KMD) analysis of PFAS homologous series revealed hydrogen-substituted perfluoroalkyl carboxylic acids (H-PFCAs) in the hulls and BSFL tissues after growth. Our approach demonstrates the utility of suspect-screening in chemical safety assessments when organic wastes with highly diverse and variable contaminant profiles are used in resource recovery pipelines.


View on ScienceDirect