Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow

By Wei Liu, Jing Yang, Jingwen Li, Jiangyu Zhang, Dan Yu, Yukang Xu, Xin He, and Xin Zhang
Environ. Poll.
April 7, 2020
DOI: 10.1016/j.envpol.2020.114491

The abnormality in thyroid hormone modulation in developmental fish, vulnerable to per- and polyfluorinated substances, is of particular concerns for the alternative substances. Juvenile rare minnows, were exposed to chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), the novel alternatives to perfluorooctane sulfonate (PFOS), for 4 weeks followed by 12 weeks of depuration. Half lives were determined to be 33 d, 29 d, and 47 d for total Cl-PFESAs, C8 Cl-PFESA and C10 Cl-PFESA, respectively. Preliminary toxicity test suggested that Cl-PFESAs are moderately toxic to Rare minnow with a LC50 of 20.8 mg/L (nominal concentration after-96 h exposure. In the chronic toxicity test, fishes were exposed to Cl-PFESAs at geometric mean measured concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L. In juvenile fishes exposed to Cl-PFESAs for 4 weeks, gene profile sequencing analysis identified 3313 differentially expressed genes, based on which pathways regulating thyroid hormone synthesis and steroid synthesis were enriched. Both whole body total and free 3,5,3′-triiodothyronine (T3) levels were significantly increased. mRNA expression of genes regulating thyroid hormone synthesis corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (THS), sodium/iodide symporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, transport transthyretin (TTR), deiodinase (Dio1, Dio2) and receptor (TRα and TRβ) were decreased. Uridinediphosphate glucoronosyl-transferases (UGT1A) gene, regulating THs metabolism, was also decreased. In adult fish, thyroid hormone and genes expression in hypothalamic-pituitary-thyroid (HPT) axis remained at disturbed levels after 12 weeks of depuration without exposure. Chronic developmental exposure to Cl-PFESAs caused persistent thyroid hormone disrupting effects in fish, highlighting a necessity of comprehensive ecological risk assessment.

View on PubMed

Location:

Topics: